Nano Technology News  
NANO TECH
Biggest Little Self-Assembling Protein Nanostructures Created
by Staff Writers
Washington DC (SPX) Jul 26, 2016


Characterization of the designed protein cages using electron microscopy. All of the raw micrographs are shown to scale relative to the 30-nanometer scale bar in panel H. Image courtesy University of Washington via Science. For a larger version of this image please go here.

A research team at the University of Washington has harnessed complex computational methods to design customized proteins that can self-assemble into 120-subunit "icosahedral" structures inside living cells-the biggest, self-booting, intracellular protein nanocages ever made. The breakthrough offers a potential solution to a pressing scientific challenge: how to safely and efficiently deliver to cells new and emerging biomedical treatments such as DNA vaccines and therapeutic interfering particles.

The work, funded by DARPA in a lead-up to the new INTERfering and Co-Evolving Prevention and Therapy (INTERCEPT) program, "opens the door to a new generation of genetically programmable protein-based molecular machines," the researchers report in this week's issue of the journal Science. The research paper is available here: http://ow.ly/LW8F302tOp3

Anyone familiar with the role-playing games Dungeons and Dragons and Munchkin need only picture the 20-sided die to understand what an organic, icosahedral cargo container looks like-symmetrical, triangle-shaped panels folded evenly on each side.

Unlike a die that can be held in your hand, however, these creations are the size of small viruses and are designed to interact with cells in the same way viruses might-that is, by delivering their caged contents into a cell, albeit in this case with positive, customizable outcomes. Also, whereas dice are produced in molds on a factory assembly line, these nanocages build themselves inside cells, following with atomic precision instructions written in genetic code.

Nature provides many examples of self- and co-assembling protein-based molecular structures like icosahedral protein cages. They serve as scaffolds, enzymes, and compartments for biochemical reactions in the body, and they form virus capsids-the geodesic-like protein enclosures that protect viral genomes from the human body's immune system and facilitate their entry into cells.

"Viruses offer researchers many lessons on ways to access the body and use the body's resources for their own purposes. DARPA is studying how to apply those tricks to the challenge of overcoming infectious disease," said Jim Gimlett, the DARPA program manager overseeing the University of Washington effort and the INTERCEPT program. Among other goals, that program seeks to deliver into cells protein snippets that can co-evolve with viruses and provide ongoing immune protection even as viruses mutate and change.

Viruses consist of two main parts: genetic material (DNA or RNA) surrounded by a protein shell. To reproduce, a virus first attaches itself to a cell within a host organism. This occurs when a virion protein on the virus binds to a complementary molecule on the surface of the cell. The virus then enters the cell and releases its genetic material inside.

These viral genes hijack the cell's biological machinery, forcing the cell to generate new copies of the viral genome and shell proteins. While still inside the host cell, those freshly minted viral genomes and protein shells assemble into new viruses, which eventually burst from the cell and disperse to infect others.

DARPA's focus is on the protein shells. If scientists could design customized shells and program them to embrace specific payloads and replicate within the body, they could open new pathways for personalized medicines and therapies. However, the universe of proteins is large, and the combinations of ways in which those proteins can-based on electromagnetic charges and other factors-link to one another and spontaneously fold within three-dimensional space is devilishly complex.

When designing a protein assembly process, the nature of the selected proteins and how they fold will determine if that creation can bind to particular cell receptors and whether it can accommodate a desired cargo such as small molecules, antibodies, nucleic acids, polymers, or other proteins. "Protein folding can be compared to a 3-D puzzle with thousands of pieces and an astronomical number of possible solutions, but only one of those solutions might be right for a particular need," Gimlett said.

The University of Washington's latest research used combinatorial computations to consider hundreds of thousands of possible protein combinations and then characterize in detail a few hundred of those designs. Then the team inserted genes encoding the desired protein sequences into E. coli bacteria to test how the instructions would be carried out within living cells.

Ten of the designs resulted in assemblies within those bacteria similar to the intended three-dimensional configurations. In fact, tests conducted using small-angle X-ray scattering and negative-stain electron microscopy revealed that these cage-like structures had self-assembled with near-perfect, atomic-scale precision.

Icosahedra possess the highest possible symmetry of any polyhedron in three-dimensional space, and thus generate the maximum enclosed volume for packaging cargo among symmetric assemblies of polymers. The accurate self-assembly of a 120-subunit icosahedral protein cage is a five-fold improvement over what had been, until recently, the previous record for such a structure: a 24-subunit, two-component tetrahedron.

Just last month, the Seattle team announced that it had broken that record by designing a hyperstable, self-assembling 60-subunit icosahedron, research that was featured in the journal Nature. In their latest paper, the researchers note that the 120-subunit assembly either hasn't evolved in nature or has yet to be discovered.

"This construct's generous capacity, and the accuracy with which it builds itself, bode well for the field of biomolecular engineering," Gimlett said. "I look forward to seeing some of the innovative applications that will surely emerge with the arrival of this robust new platform."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
INTERfering and Co-Evolving Prevention and Therapy (INTERCEPT) program
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Electron spin control: Levitated nanodiamond is research gem
West Lafayette IN (SPX) Jul 26, 2016
Researchers have demonstrated how to control the "electron spin" of a nanodiamond while it is levitated with lasers in a vacuum, an advance that could find applications in quantum information processing, sensors and studies into the fundamental physics of quantum mechanics. Electrons can be thought of as having two distinct spin states, "up" or "down." The researchers were able to detect and con ... read more


NANO TECH
Pollution from commercial jets harms environment: US

Australia says no clues from FBI report on MH370 pilot

MH370 hopes 'fading', search suspension looms

Martin Aircraft, Avwatch partner to market jetpack in U.S.

NANO TECH
China commissions space tracking ship as new station readied

China's second space lab Tiangong-2 reaches launch center

Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

NANO TECH
Government requests for Google data hits record high

Chinese national jailed for hacking US defense firms

Microsoft wins appeal to protect overseas data

EU launches controversial internet privacy deal with US

NANO TECH
Russian and US engineers plan manned moon mission

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

Taiwan to make lunar lander for NASA moon-mining mission

NASA camera catches moon 'photobombing' Earth

NANO TECH
Electron spin control: Levitated nanodiamond is research gem

Researchers develop faster, precise silica coating process for quantum dot nanorods

Achieving a breakthrough in the formation of beam size controllable X-ray nanobeams

'Nano scalpel' allows scientists to manipulate materials with nanometer precision

NANO TECH
Russia Tests Parts of 6th Generation, Railgun Equipped Near Space Warplane

Raytheon, USAF test small diameter bomb II system

UK military to lift ban on women in combat roles

Spain drops first GBU-48 from Eurofighter Typhoon

NANO TECH
Electron spin control: Levitated nanodiamond is research gem

Researchers develop faster, precise silica coating process for quantum dot nanorods

Achieving a breakthrough in the formation of beam size controllable X-ray nanobeams

'Nano scalpel' allows scientists to manipulate materials with nanometer precision

NANO TECH
Hey robot, shimmy like a centipede

New remote-controlled microrobots for medical operations

Minimalist swimming microrobots

Artificial muscle for soft robotics: Low voltage, high hopes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.