Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
A smashing new look at nanoribbons
by Staff Writers
Houston TX (SPX) Jul 01, 2014


Molecular simulations and electron microscope images show what happens to a carbon nanotube when the end of it strikes a target directly at about 15,000 miles per hour. Rice University researchers found the nanotubes split into useful nanoribbons. Image courtesy Ajayan Group and Rice University. For a larger version of this image please go here.

Carbon nanotubes "unzipped" into graphene nanoribbons by a chemical process invented at Rice University are finding use in all kinds of projects, but Rice scientists have now found a chemical-free way to unzip them.

The Rice lab of materials scientist Pulickel Ajayan discovered that nanotubes that hit a target end first turn into mostly ragged clumps of atoms. But nanotubes that happen to broadside the target unzip into handy ribbons that can be used in composite materials for strength and applications that take advantage of their desirable electrical properties.

The Rice researchers led by graduate student Sehmus Ozden reported their finding in the American Chemical Society journal Nano Letters. The result was a surprise, Ozden said. "Until now, we knew we could use mechanical forces to shorten and cut carbon nanotubes. This is the first time we have showed carbon nanotubes can be unzipped using mechanical forces."

The researchers fired pellets of randomly oriented, multiwalled carbon nanotubes from a light gas gun built by the Rice lab of materials scientist Enrique Barrera with funding from NASA. The pellets impacted an aluminum target in a vacuum chamber at about 15,000 miles per hour.

When they inspected the resulting carbon rubble, they found nanotubes that smashed into the target end first or at a sharp angle simply deformed into a crumpled nanotube. But tubes that hit lengthwise actually split into ribbons with ragged edges.

"Hypervelocity impact tests are mostly used to simulate the impact of different projectiles on shields, spacecraft and satellites," Ozden said. "We were investigating possible applications for carbon nanotubes in space when we got this result."

The effect was confirmed through molecular simulations. They showed that when multiwalled tubes impact the target, the outer tube flattens, hitting the inside tubes and unzipping them in turn. Single-wall nanotubes do just the opposite; when the tube flattens, the bottom wall hits the inside of the top wall, which unzips from the middle out to the edges.

Ozden explained that the even distribution of stress along the belly-flopping nanotube, which is many times longer than it is wide, breaks carbon bonds in a line nearly simultaneously.

The researchers said 70 to 80 percent of the nanotubes in a pellet unzip to one degree or another. Ozden said the process eliminates the need to clean chemical residues from nanoribbons produced through current techniques.

"One-step, chemical-free, clean and high-quality graphene nanoribbons can be produced using our method. They're potential candidates for next-generation electronic materials," he said.

Co-authors include Pedro Autreto, a postdoctoral researcher at the State University of Campinas, Brazil, who has a complimentary appointment at Rice; graduate student Chandra Sekhar Tiwary of Rice and the Indian Institute of Science, Bangalore; graduate student Suman Khatiwada of Rice; Leonardo Machado and Douglas Galvao of the State University of Campinas; and Robert Vajtai, a senior faculty fellow at Rice. Barrera is a professor of materials science and nanoengineering. Ajayan is Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry, and chair of the Department of Materials Science and NanoEngineering. The Department of Defense, U.S. Air Force Office of Scientific Research through a Multidisciplinary University Research Institute grant, and the Brazilian agencies National Council for Scientific and Technological Development, Coordination for the Improvement of Higher Education Personnel and the Sao Paulo Research Foundation supported the research.

.


Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Diamond plates create nanostructures through pressure, not chemistry
Albuquerque NM (SPX) Jul 01, 2014
You wouldn't think that mechanical force - the simple kind used to eject unruly patrons from bars, shoe a horse or emboss the raised numerals on credit cards - could process nanoparticles more subtly than the most advanced chemistry. Yet, in a current paper in Nature Communications, Sandia National Laboratories researcher Hongyou Fan and colleagues appear to have achieved a start toward that end ... read more


NANO TECH
Northrop Grumman received new order for E-2D aircraft

Britain's aerospace industry outpaces rest of economy

New Zealand, others to receive CAE flight training systems

Unrest in Iraq could delay delivery of US F-16s

NANO TECH
Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

China plans to land rover on Mars by 2020

Chinese lunar rover alive but weak

NANO TECH
US to push China on hacking at high-level talks

NSA releases first statistics on surveillance sweep

Warrant needed for cell phone search: top US court

Hong Kong pro-democracy tabloid blames Beijing for cyber-attack

NANO TECH
Green planning needed to maintain city buildings

GE taps China CEO to lead Alstom merger

Net energy analysis should become a standard policy tool

Malware aims at US, Europe energy sector: researchers

NANO TECH
New Look At Skyrmions Holds Promise For Spintronics

Scandlines hybrid electric ferries largest hybrid ferry fleet in the world

Light-emitting diode treatments outperform traditional lighting methods

USC scientists create new battery that's cheap, clean, rechargeable...and organic

NANO TECH
Gyroscope production milestone for Northrop Grumman

Kuwait wants U.S. assistance for military hospital

Demilitarization facility for munitions inaugurated in France

Raytheon bomb moves closer to low-rate production

NANO TECH
Shaken, not stirred -- mythical god's capsules please!

Diamond plates create nanostructures through pressure, not chemistry

Nanoscale composites improve MRI

DNA-Linked Nanoparticles Form Switchable "Thin Films" on a Liquid Surface

NANO TECH
Ask the crowd: Robots learn faster, better with online helpers

IBM's Watson app whips up Big Data in the kitchen

Japan unveils 'world's first' android newscaster

Japan robot firm showcases thought-controlled suits




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.