A new spin in nano-electronics by Staff Writers Dresden, Germany (SPX) Feb 26, 2019
In recent years, electronic data processing has been evolving in one direction only: The industry has downsized its components to the nanometer range. But this process is now reaching its physical limits. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) are therefore exploring spin waves or so-called magnons - a promising alternative for transporting information in more compact microchips. Cooperating with international partners, they have successfully generated and controlled extremely short-wavelength spin waves. The physicists achieved this feat by harnessing a natural magnetic phenomenon, as they explain in the journal Nature Nanotechnology (DOI: 10.1038/s41565-019-0383-4). For a long time, there has been one reliable rule of thumb in the world of information technology: The number of transistors on a microprocessor doubles approximately every two years. The resulting performance boost brought us the digital opportunities we now take for granted, from high speed internet to the smartphone. But as the conductors on the chip get ever more minute, we are starting to face problems, as Dr. Sebastian Wintz from HZDR's Institute of Ion Beam Physics and Materials Research explains: "The electrons that flow through our modern microprocessors heat up the chip due to electrical resistance. Beyond a certain point, the chips simply fail because the heat can no longer escape." This also prevents a further increase in the speed of the components. This is why the physicist, who is also currently working at the Paul Scherrer Institute (PSI) in Switzerland, envisions a different future for information carriers. Instead of electrical currents, Wintz and his colleagues are capitalizing on a specific property of electrons called 'spin'. The tiny particles behave as if they were constantly rotating around their own axis, thus creating a magnetic moment. In certain magnetic materials, like iron or nickel, the spins are typically parallel to each other. If the orientation of these spins is changed in one place, that disruption travels to the neighboring particles, triggering a spin wave which can be used to encode and distribute information. "In this scenario, the electrons remain where they are," says Wintz, describing their advantage. "They hardly generate any heat, which means that spin-based components might require far less energy."
How can we control the wave? Sebastian Wintz and his co-workers have now been able to find solutions to both problems. "Unlike the artificially made antennas that are commonly employed to excite the waves, we now use one that is naturally formed inside the material," the first author of the study Dr. Volker Sluka explains. "To this end, we fabricated micro-elements comprising two ferromagnetic disks that are coupled antiferromagnetically via a Ruthenium spacer. Furthermore, we chose the material of the disks so that the spins prefer to align along a particular axis in space, which results in the desired magnetic pattern." Within the two layers, this creates areas of different magnetization, separated by what is called a domain wall. The scientists then exposed the layers to magnetic fields alternating with a frequency of one gigahertz or higher. Using an X-ray microscope from the Max Planck Institute for Intelligent Systems Stuttgart, which is operated at the Helmholtz-Zentrum Berlin, they were able to observe that spin waves with parallel wave fronts travel along the direction perpendicular to the domain wall. "In previous experiments, the ripples of the wave looked like the ones you get when a pebble hits a water surface," Sluka reports. "This is not optimal, because the oscillation decays quickly as the wave spreads in all directions. To stay in the same analogy, the waves now look as if they were produced by a long rod moving back and forth in the water." As the X-ray images have shown, these spin waves can travel several micrometers at wavelengths of only about 100 nanometers, without any significant loss of signal - a necessary prerequisite for using them in modern information technology. Moreover, the physicists have discovered a possible way to control this new information carrier when they set the stimulation frequency below half a gigahertz. The spin waves thus remained trapped in the domain wall: "In this scenario, the waves were even able to run in a curve," says Volker Sluka, adding: "Nevertheless we were still able to detect the signals." With their results, the researchers have laid important foundations for the further development of spin wave-based circuits. In the long run, this might facilitate a completely novel design of microprocessors, Sebastian Wintz predicts: "Using magnetic fields, we can move domain walls relatively easily. That means that chips that work with spin waves don't necessarily need a predefined architecture, but they can later be changed and adapted to fulfill new tasks."
Research Report: Emission and propagation of 1D and 2D spin-waves with nanoscale wavelengths in anisotropic spin textures
The holy grail of nanowire production Lausanne, Switzerland (SPX) Feb 25, 2019 Nanowires have the potential to revolutionize the technology around us. Measuring just 5-100 nanometers in diameter (a nanometer is a millionth of a millimeter), these tiny, needle-shaped crystalline structures can alter how electricity or light passes through them. They can emit, concentrate and absorb light and could therefore be used to add optical functionalities to electronic chips. They could, for example, make it possible to generate lasers directly on silicon chips and to integrate single- ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |