. | . |
|
. |
by Staff Writers Vienna, Austria (SPX) Mar 19, 2012
Printing three dimensional objects with incredibly fine details is now possible using "two-photon lithography". With this technology, tiny structures on a nanometer scale can be fabricated. Researchers at the Vienna University of Technology (TU Vienna) have now made a major breakthrough in speeding up this printing technique: The high-precision-3D-printer at TU Vienna is orders of magnitude faster than similar devices (see video). This opens up completely new areas of application, such as in medicine.
Setting a New World Record "Until now, this technique used to be quite slow", says Professor Jurgen Stampfl from the Institute of Materials Science and Technology at the TU Vienna. "The printing speed used to be measured in millimeters per second - our device can do five meters in one second." In two-photon lithography, this is a world record. This amazing progress was made possible by combining several new ideas. "It was crucial to improve the control mechanism of the mirrors", says Jan Torgersen (TU Vienna). The mirrors are continuously in motion during the printing process. The acceleration and deceleration-periods have to be tuned very precisely to achieve high-resolution results at a record-breaking speed.
Photoactive Molecules Harden the Resin These initiator molecules are only activated if they absorb two photons of the laser beam at once - and this only happens in the very center of the laser beam, where the intensity is highest. In contrast to conventional 3D-printing techniques, solid material can be created anywhere within the liquid resin rather than on top of the previously created layer only. Therefore, the working surface does not have to be specially prepared before the next layer can be produced (see Video), which saves a lot of time. A team of chemists led by Professor Robert Liska (TU Vienna) developed the suitable initiators for this special resin. Researchers all over the world are working on 3D printers today - at universities as well as in industry. "Our competitive edge here at the Vienna University of Technology comes from the fact that we have experts from very different fields, working on different parts of the problem, at one single university", Jurgen Stampfl emphasizes. In materials science, process engineering or the optimization of light sources, there are experts working together and coming up with mutually stimulating ideas. Because of the dramatically increased speed, much larger objects can now be created in a given period of time. This makes two-photon-lithography an interesting technique for industry. At the TU Vienna, scientists are now developing bio-compatible resins for medical applications. They can be used to create scaffolds to which living cells can attach themselves facilitating the systematic creation of biological tissues. The 3d printer could also be used to create tailor made construction parts for biomedical technology or nanotechnology.
Technische Universitat Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |